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BASIC ASPECTS OF DIFFERENTIAL GEOMETRY
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This is a very partial description of differential geometry as elaborated by Élie Cartan and
expressed in a suitable language by Charles Ehresmann. Since this new language has become
classical, I apologize to those who know it better than myself: this text is not written for them.
I am entirely responsable for the selection of materials and for the mistakes, if any.

The framework is that of smooth1 (finite dimensional) manifolds and maps, whose definition
is taken for granted—most of the notions we consider “pass” without any problem to the real
analytic and (replacing R by C) complex and/or Banach categories. The kth derivative of a map
f is denoted by Dkf as in [10]. Paths are defined on intervals.

1. Jets

Introduced by Ehresmann [14], curiously almost absent from [11, 12], they are at the very
beginning of modern differential geometry, as they generalise Taylor expansions to maps between
manifolds. Recall the Faà di Bruno2 formula giving the kth derivative of the composed map of
two Ck maps between open subsets of Banach spaces:
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where x lies in the definition domain of g ◦ f , the vector v in the ambient Banach space,

vk := (
k times︷ ︸︸ ︷
v, ..., v) and the sum is on all p = (p1, . . . , pk) ∈ Nk with

∑
j pj = k, setting |p| = ∑

pj .
For each integer k, two Ck maps f and g, defined in the neighbourhood of a point a in a

manifold M , taking their values in a manifold N , have the same kth order jet at a, denoted
jk
af = jk

ag, when they take the same value b at a and there exist local charts ϕ : (M,a) → Rn

and ψ : (N, b) → Rp such that ψ ◦ f ◦ ϕ−1 and ψ ◦ g ◦ ϕ−1 have the same kth order Taylor
expansion at ϕ(a); fortunately for this definition, the Faà di Bruno formula implies that such is
then the case for all local charts ϕ, ψ at a and b respectively.
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e-mail: chaperon@math.jussieu.fr

Manuscript received June 2010.

1That is C∞ or “smooth enough”, the word being implicit when nothing is specified.
2Beatified in 1988. . . It is obtained by “composition of kth order Taylor expansions” [8].
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Let Jk(M, N) be the set of kth order jets jk
af of maps of M into N . If M, N are open subsets

U, V of Rn,Rp respectively, Jk(U, V ) identifies to the open subset U × V × Jk(n, p) of the finite
dimensional vector space

Jk(Rn,Rp) = Rn × Rp × Jk(n, p) := Rn ×
k∏

j=0

Lj
s(Rn,Rp),

where Lj
s(Rn,Rp) is the space of symmetric j-linear maps of (Rn)j into Rp and L0

s(Rn,Rp) := Rp;
indeed, jk

af is then naturally identified to
(
a,

(
Djf(a)

)
0≤j≤k

)
, and this identification is bijective

since every (a, b0, . . . , bk) ∈ U × V × Jk(n, p) is of the form jk
af for f(x) =

∑k
0

1
j!bj(x− a)j .

In the general case, it follows from the Faà di Bruno formula that Jk(M, N) is endowed with
a smooth manifold structure by the natural charts Φk

ϕ,ψ associated to pairs of local charts ϕ of
M and ψ of N as follows:

• the (open) definition domain DomΦk
ϕ,ψ of Φk

ϕ,ψ is the set of jk
af with a ∈ Domϕ and

f(a) ∈ Domψ

• the chart Φk
ϕ,ψ is given by the formula3

Φk
ϕ,ψ(jk

af) := jk
ϕ(a)(ψ ◦ f ◦ ϕ−1)

• its range Im Φk
ϕ,ψ therefore is Jk(Imϕ, Imψ).

Examples and “derived products”. The manifold J0(M, N) is of course identified to M×N

by the diffeomorphism j0
af 7→ (

a, f(a)
)
.

The set of all j1
0f ∈ J1(R, N) is a submanifold, the tangent bundle TN of N : each Φ1

idR,ψ is
an adapted chart for TN and restricts to the chart Tψ : j1

0γ 7→ (
ψ ◦ γ(0), (ψ ◦ γ)′(0)

)
; moreover,

J1(R, N) is identified to R× TN by the map j1
t γ 7→ (

t, j1
0(γ ◦ τ−t)

)
, where τ−t(x) = x + t. One

calls j1
0(γ ◦ τ−t) the velocity γ̇(t) of the path γ at time t (the knowledge of this velocity includes

that of the position γ(t), but not that of the time t).
Symmetrically, the set of all j1

af ∈ J1(M,R) with f(a) = 0 is a submanifold, the cotangent
bundle T ∗M of M : each natural chart Φ1

ϕ,idR is an adapted chart for T ∗M and restricts to the

chart T ∗ϕ : j1
af 7→

(
ϕ(a), D(f ◦ ϕ−1)

(
ϕ(a)

))
; moreover, J1(M,R) is identified to T ∗M × R by

the map j1
af 7→ (

j1
a(τf(a) ◦ f), f(a)

)
. One calls j1

a(τf(a) ◦ f) the differential daf of f at a (its
knowledge includes that of a, but not of f(a)).

The natural charts endow Jk(M, N) with much more than just a manifold structure, since the
projections jk

af 7→ a (“source projection”), jk
af 7→ f(a) (“target projection”) and jk

af 7→ j`
af ,

0 ≤ ` < k, are fibrations, as we shall now see.

2. Submersions and fibrations

A map
E

↓ π

B

between manifolds is a submersion when “it is locally in E the projection onto

the first factor of a product”: for every a ∈ E, there exist an open subset U of Rn, an open
subset V of Rr, a local chart ϕ̃ of E at a and a local chart ϕ of B at π(a) such that Im ϕ̃ = U×V ,
Imϕ = U and ϕ ◦ π = pr1 ◦ ϕ̃, where pr1 : U × V → U denotes the projection onto the first
factor. One then calls ϕ̃ a fibred chart of the submersion over ϕ.

Similarly, π is a locally trivial fibration when “it is locally in B the projection onto the
first factor of a product”: for every b ∈ B, there exist a local chart ϕ of B at b, a manifold

3Implying that the transition maps are given by Φk
ϕ1,ψ1 ◦ (Φk

ϕ,ψ)−1 = Φϕ1◦ϕ−1,ψ1◦ψ−1 .



24 TWMS J. PURE APPL. MATH., V.2, N.1, 2011

F and a diffeomorphism ϕ̃ of π−1(Domϕ) onto Imϕ × F such that ϕ ◦ π = pr1 ◦ ϕ̃, where
pr1 : Imϕ× F → Imϕ is the projection onto the first factor4.

Clearly (taking local charts of F ) a fibration is a submersion and (by the very definition of
a submanifold) the fibres π−1(b) of a submersion are submanifolds. When π is a fibration, one
calls E (the total space of) a fibre bundle5 with base space B and projection π.

When F is an open subset of Rr, the diffeomorphism ϕ̃ in the definition of a fibre bundle
(which determines ϕ) is a chart of E. A vector bundle is defined by an atlas of such charts ϕ̃ with
F = Rr (or a vector space), such that the transition maps ϕ̃1 ◦ ϕ̃−1 are linear with respect to F

(“atlas of vector bundle”). Il follows that the fibres Eb = π−1(b) are endowed with a structure
of vector space isomorphic to F . Replacing “linear” and “vector” by “affine”, on gets the notion
of an affine bundle, whose fibres are affine spaces.

Sections. With the previous notation, a smooth section of the submersion π over the open
subset U of B is a smooth map σ of U into π−1(U) such that π ◦ σ = idU ; if U = B, it is called
a section of π. In the same way as a map is determined by its graph, a section is determined
by its image σ(U), which is a submanifold (it appears as a graph in the fibred charts ϕ̃). It
is therefore natural—hence the terminology—to consider that a smooth section of π over U is
a submanifold meeting each fibre of π|π−1(U) at a unique point and transversally (see the sequel).

The case of jets. Il is obvious that the projections π`
k : Jk(M,N) → J `(M,N) de-

fined for ` ≤ k by π`
k(j

k
af) = j`

af are fibrations, whose typical fibre F is the vector space∏
`<j≤k Lj

s(Rn,Rp): just take ϕ̃ = Φk
ϕ,ψ and ϕ := Φ`

ϕ,ψ in the definition. Similarly, taking
ϕ̃ = Φk

ϕ,ψ and ϕ = ϕ (resp. ϕ := ψ) in the definition of a submersion, one sees that the source
projection sk : jk

af → a and the target projection bk : jk
af → f(a) are submersions6. By the Faà

di Bruno formula,

• this defines on J1(M, N) a vector bundle structure with base space J0(M, N) = M ×N ,
projection π0

1 and typical fibre L(Rn,Rp)
• hence, the tangent bundle TN is a vector bundle with base space N and typical fibre
Rp = L(R,Rp), and the cotangent bundle T ∗M a vector bundle with base space M and
typical fibre Rn∗ = L(Rn,R)

• for k > 1, the fibre bundle Jk(M, N) is an affine bundle with typical fibre Lk
s(Rn,Rp)

over Jk−1(M,N)
• for ` < k ≤ 2` + 1, the space Jk(M,N) is endowed by the charts Φk

ϕ,ψ with an affine
bundle structure over J `(M, N)

• such is not the case for k > 2` + 1, the transition maps between natural charts being
polynomial of degree at least 2 with respect to the typical fibre, but

• if N is a vector space, Jk(M, N) is endowed for 0 ≤ ` < k with a structure of affine
bundle over J `(M,N) (vector bundle if ` = 0) by the charts Φk

ϕ,idN
.

4One can avoid the use of ϕ via the following equivalent definition: for every b ∈ B, there exist an open subset

Ω 3 b of B and a diffeomorphism h of π−1(Ω) onto Ω × F such that π|π−1(Ω) is the first component of the local

trivialisation h of π.
5A somewhat disgusting terminology.
6They are in fact fibrations, whose typical fibres are respectively the set Jk

0 (Rn, N) of all jk
0 f ∈ Jk(Rn, N) and

the set Jk(M,Rp)0 of all jk
af ∈ Jk(M,Rp) with f(a) = 0; the proof is the same as for the tangent and cotangent

bundles: to each chart ϕ of M one can associate the diffeomorphism ϕ̃ of s−1
k (Dom ϕ) onto Im ϕ × Jk

0 (Rn, N)

mapping jk
af to

�
ϕ(a), jk

0 (f ◦ ϕ−1 ◦ τ−ϕ(a))
�
; similarly, to each chart ψ of N is associated the diffeomorphism ψ̃

of b−1
k (Dom ψ) onto Im ψ × Jk(M,Rp)0 mapping jk

af to
�
ψ ◦ f(a), jk

a(τψ◦f(a) ◦ ψ ◦ f)
�
.
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The fibre TaM of TM over a ∈ M is the tangent space7 of M at a; the fibre T ∗a M of T ∗M
identifies naturally to the dual space (TaM)∗, the duality form being

(
γ̇(a), daf

) 7→ (f ◦ γ)′(a).

Examples of sections. For every smooth map f of an open subset U of a manifold M into
a manifold N , the map a 7→ jk

af is a section jkf of the source projection Jk(M,N) → M over8

U , the kth order jet of f ; such sections are called holonomic.
A section of the tangent bundle TM → M over U is called a vector field9 on U .
For every smooth real function f on an open subset U of M , the map df : a 7→ daf is a

section of the cotangent bundle T ∗M → M over U or, equivalently, a section of the cotangent
bundle T ∗U ⊂ T ∗M ; a section of the cotangent bundle T ∗U → U is called a “field of covectors”
or Pfaffian form (or differential form of degree 1, or differential 1-form, or 1–form) on U .

More generally, to each smooth map f : M → N is associated the map Tf of TM in TN

defined by Tf
(
γ̇(a)

)
= ˙f ◦ γ(a); its restriction Taf to each fibre TaM is a linear map into

Tf(a)M (“linear map tangent to f at a”): this is expressed by calling Tf a homomorphism of
vector bundles.

Of course, Taf is identified to j1
af . In the seventies, some authors [11, 12] would replace for

example j2f by T (Tf), but the ensuing inflation of dimensions and redondance are unreasonable.

Infinitesimal characterization of submersions, vertical and horizontal spaces, sec-

tions. It follows easily from the inverse mapping theorem that a smooth map
E

↓ π

B

between

manifolds is a submersion in the neighborhood of a ∈ E if and only if the tangent linear map
Taπ is onto; therefore, π is a submersion if and only if Taπ is onto for every a ∈ E.

For each a ∈ E, setting b = π(a), the tangent space at a to the fibre π−1(b) of the submersion
π is the kernel KerTaπ; it is called the vertical space Va of π at a; in the case of a vector bundle,
it identifies therefore to the vector space Eb; for an affine bundle, it is identified to the underlying
vector space ~Eb of the fibre.

We can now characterize the smooth sections σ of the submersion π over an open subset U

of B as submanifolds: they are the submanifolds W of π−1(U) that meet each fibre π−1(b) with
b ∈ U at a unique point a, such that the tangent space TaW is horizontal, i. e. a complement
in TaE of the vertical space Va; in other words, π|W is a diffeomorphism of W onto U and the
corresponding section σ is the composed map of (π|W )−1 and the inclusion W ↪→ π−1(U).

Remarks. In the case of the tangent bundle, one should therefore imagine the fibres TaM as
vertical, transversal to M (identified to the zero section). This somewhat contradicts the geo-
metric intuition of submanifolds in Rd, for which TaM lies along M , but one must understand
that by identifying each TaM to the affine subspace so obtained, one gets a very bad represen-
tation of TM : in the case where M is a curve in R3, for example, the surface of R3 so obtained
admits M as a cuspidal line at points where the curve is “truly spatial”, i. e. with nonegative
curvature and torsion, even though these are the least singular points of the surface lying in M .

Similarly, the geodesics of a surface S in Euclidean space R3 are the parametrised curves γ

with values in S whose acceleration γ′′(t) is normal to the surface for every t, whereas the second

7Therefore, it is a vector space; when M is a submanifold of Rd, it should nevertheless be pictured genuinely

tangent to M at a: indeed, TaM is obtained by “looking at M through a microscope centred at a ”, taken as the

origin of the affine space Rd.
8Obviously a section of the source projection Jk(U, N) → U .
9At every point a of U one grows a vector Xa ∈ TaU = TaM .
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derivative γ̈(t) is horizontal for the Levi-Civita connection (see the sequel). One has to get used
to it. . .

Worse: the rank of a fibre bundle is the dimension of its fibre, i. e. the corank of its projection.

More fibre bundles. The datum of a basis (“reference frame”) (e1, . . . , en) of a real vector
space E is equivalent to that of the isomorphism (x1, . . . , xn) 7→ x1e1 + · · · + xnen of Rn onto
E. An essential object, introduced (in a different language) by Élie Cartan, is the frame bundle
of a manifold M of dimension n, whose fibre over a ∈ M is the set of (linear) isomorphisms Aa

of Rn onto TaM ; therefore, it is a dense open subset of the vector bundle over M (generalising
TM) consisting of all j1

0f ∈ J1(Rn,M), and obviously a fibre bundle whose typical fibre is the
linear group GLn(R) (Ln in Ehresmann’s notation): this can be seen by restricting the natural
charts ΦidRn ,ϕ of J1(Rn,M).

This frame bundle, denoted by Isom(M × Rn, TM) in [12]10, is naturally endowed with the
action (B, Aa) 7→ Aa◦B−1 of GLn(R), which is free and transitive in each fibre: this is expressed
by calling it a principal bundle with structural group GLn(R).

Ehresmann’s “regular infinitesimal structures” are “principal subbundles of the frame bundle”.
For example, the datum of a Riemannian metric on M (i. e. a scalar product in each tangent

space TaM , depending smoothly on a in the sense that the real function which to v ∈ TM

associates its scalar square is smooth) is equivalent to the datum of the subbundle of the frame
bundle consisting of those Aa which map the canonical basis of Rn to an orthonormal basis for
the scalar product in TaM . This is a principal bundle whose structural group is the orthogonal
group On, the orthonormal frame bundle of the Riemannian manifold. The scalar product on
TaM is the image of the standard Euclidean scalar product on Rn by any of of those “orthonormal
frames” Aa.

Similarly, given a closed subgroup H of GLn(R), the datum of a principal subbundle of the
frame bundle, with structural group H, is equivalent to the datum, for each a ∈ M , of one of
the frames11 Aa, the others being determined by the action of H. The “structure” preserved (or
defined) by H is then tranferred to TaM by any of the Aa’s.

For each Aa, the n components of A−1
a (coordinate functions in the frame Aa) are linear

forms on TaM ; they constitute the “coframe” mentioned by Élie Cartan and Ehresmann; given
a section of the frame bundle under study over the open U of M , i. e., for each a ∈ U , the choice
of one frame Aa in the fibre, the components of a 7→ A−1

a are therefore Pfaffian forms on U .

3. Pfaffian systems and systems of partial differential (in) equations

The space Jk(M, N) is not only a fibre bundle in many ways: for k > 0, it is also endowed
with a canonical Pfaffian system, easy to understand when M = Rn and N = Rp.

A section σ of the source projection of Jk(Rn,Rp) = Rn × ∏k
0 Lj

s(Rn,Rp) over an open
subset U of Rn is a map of U into Jk(Rn,Rp) that writes σ(x) =

(
x, y0(x), . . . , yk(x)

)
; clearly,

it is holonomic (i. e. of the form jkf) if and only if, modulo the canonical identification of
L

(
Rn, Lj(Rn,Rp)

)
to Lj+1(Rn,Rp) familiar in differential calculus, Dyj(x) = yj+1(x) for all

x ∈ U and 0 ≤ j < k.

10Though it might make one believe that the sphere of dimension 2 is parallelisable, see the following footnote.
11If one wishes them to depend smoothly on a, one must stay at the local level: otherwise, one would get an

isomorphism of the trivial vector bundle M × Rn onto TM , an isomorphism that does not [25] exist in the case

of manifolds as respectable as the sphere of dimension 2: they are not parallelisable.
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Let us express this viewing σ as the submanifold W = σ(U): if one writes z = (x, y0, . . . , yk)
the points of Jk := Jk(Rn,Rp), the section is holonomic if and only if, at every point z of
W , the tangent space TzW (in other words, the image of Dσ(x)) is contained in the subspace
Kk

z = Kk
z (Rn,Rp) of TzJ

k ' Jk defined by the equations

dyj = yj+1 dx pour 0 ≤ j < k, (1)

i. e. consisting of those vectors δz = (δx, δy0, . . . , δyk) such that, modulo the canonical identifi-
cation just mentioned12, δyj = yj+1 δx for 0 ≤ j < k.

One calls (1) the canonical Pfaffian system or Cartan system (or canonical contact structure)
of Jk(Rn,Rp); equivalently, one can give the same name to the field of vector subspaces (“plane
field”) z 7→ Kk

z , that can be seen geometrically as the sub-vector bundle Kk = Kk(Rn,Rp) of
TJk ' Jk × Jk union of the subsets {z} × Kk

z .
One can then see that, for each z ∈ Jk, the “plane” Kk

z is the closure13 of the union of all TzW

when W varies among the holonomic sections through z; using the natural charts, this yields
the following fact: given now two manifolds M and N , one defines a Pfaffian system Kk(M, N)
on Jk(M,N), i. e. a sub-vector bundle of the tangent bundle TJk(M, N), by the fact that its
fibre over z ∈ Jk(M, N) is the closure in TzJ

k(M,N) of the union of the tangent spaces at z to
holonomic sections through z. Naturally,

• it is called the canonical Pfaffian system or Cartan system (or canonical contact struc-
ture) of Jk(M, N)

• one has TzΦ
(Kz(M, N)

)
= KΦ(z)(Rn,Rp) for every natural chart Φ of Jk(M, N) and ev-

ery jet z ∈ DomΦ, implying that Kk(M,N) is indeed a sub-vector bundle of TJk(M, N).

The reader has understood that a Pfaffian system on a manifold V can be defined14 as a sub-
vector bundle P of the tangent bundle TV ; an integral manifold of P is a submanifold W of V

such that one has TzW ⊂ Pz for every z ∈ W ; in this langage, a section of the source projection
of Jk(M, N) is holonomic if and only if, seen as a submanifold, it is an integral manifold of the
Cartan system—which admits other integral manifolds, for example the fibres of the projection
onto Jk−1(M, N).

Example. If p = 1, the Cartan system K1(M,N) is a field of hyperplanes, authentic contact
structure in today’s restrictive sense, and its integral manifolds of dimension n are called Legendre
submanifolds, a terminology due to V.I. Arnol’d. In particular, (1) consists of one equation, and
the Pfaffian form α = dy0 − y1 dx on J1(Rn,R) is a contact form, meaning that dαz induces
a nondegenerate bilinear form on K1

z = Kerαz; according to a theorem of Darboux [8], up to
diffeomorphism, all contact forms in dimension 2n + 1 are locally equal to α.

Systems of partial differential equations. A system of q partial differential equations of
degree k in p unknown functions of n variables writes in a condensed way F (jk

xy) = 0, where
F is a map of an open subset of Jk(Rn,Rp) into Rq, the variable is x ∈ Rn and the unknown
function y (with values in Rp). A solution f of the system defined in an open subset of Rn is
identified to jkf , i. e. to a holonomic section of the source projection Jk(Rn,Rp) → Rn over U

that takes its values in E = F−1(0) or, in other words, to an integral manifold of the canonical
contact structure contained in E and projecting diffeomorphically onto U .

12Shortly, yj+1 δx is the interior product (“contraction”) of yj+1 by δx, i. e. the symmetric j–linear map

(δx1, . . . , δxj) 7→ yj+1(δx, δx1, . . . , δxj).
13One has to “catch” also the vertical vectors for the projection onto Jk−1.
14In “real life”, we are going to see that the notion can be more complicated: the manifold V may have singular

points, the dimension of the fibre Pz may vary at some points z ∈ V , etc.
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A system of partial differential equations therefore identifies to a Pfaffian system, provided
the name is given to the pair consisting of (1) and of the equation F (z) = 0. To use our first
definition, one should take as a manifold V the smooth part of E (when F is analytic, this
makes sense) and as a Pfaffian system Pz := Kz ∩ TzV , a “fibre bundle” whose rank may have
an unfortunate propension to jump (for example, if k = n = p = q = 1, it may well happen
that Kz = TzV at some points, which should be excluded from V if one is looking for a genuine
sub-vector bundle).

Of course, all this extends to the case where E is a submanifold of codimension q of Jk(M, N),
not necessarily defined globally by q real equations.

For k = p = q = 1, it is fruitful to first forget the projection J1 → J0 and consider the
“geometric solutions” of the equation, i. e. the Legendre submanifolds contained in E, whether
they are or not sections of the source projection. They sometimes have a physical meaning: for
example, caustics are the projections into J0 of such geometric solutions. This case, whose local
theory goes back to the nineteenth century, still gives rise to new global developments.

Systems of partial differential inequations. The spaces of jets also serve as the frame-
work of the homotopy principle or h–principle [19], introduced by Gromov in his thesis as an
astounding abstraction of Smale’s classification of immersions. The idea is dual to what has
just been done: in the case of immersions of a manifold M into a manifold N , one considers
in J1(M, N) the open subset Ω consisting of jets of immersions, i. e. j1

af such that Taf is
injective. Given two immersions f0, f1 of M into N , the question is whether they are regularly
homotopic, i. e. whether there exists a smooth path [0, 1] 3 t 7→ ft joining them in the space
of immersions; in other words, one wonders whether there exists a path of holonomic sections
j1ft of J1(M,N) → M joining j1f0 to j1f1 and such that all these sections take their values in
Ω. Naturally, the same problem can be posed for various subsets Ω of various Jk(M, N)’s; the
homotopy principle (when it is true) states that the question admits a positive answer if and
only if this is the case forgetting the contact structure but not the source projection, meaning
that one can join the two holonomic sections by a path in the set of not necessarily holonomic
sections with values in Ω. With time, this has become astonishingly simple [16].

4. Connections

Here again, Ehresmann did a good job. The problem is that a submersion
E

↓ π

B

does not

allow even locally the unique lifting of paths, except when it is a local diffeomorphism at every
point (in which case, if it is a fibration, one calls it a covering): if ϕ̃ is a fibred chart of π, with
image U ×V , over a chart ϕ of B, then, for every path γ with values in Domϕ, any path γ̃ with
values in Dom ϕ̃ of the form γ̃(t) = ϕ̃−1

(
ϕ ◦ γ(t), f(t)

)
with Dom γ̃ = Dom γ is a lift(ing) of γ,

meaning that π ◦ γ̃ = γ; therefore, even if one imposes to γ̃ a given value a ∈ π−1
(
γ(t0)

)
for

t = t0, there are many possible choices f , none of which is a priori better than the others. The
datum of a connection suppresses this indetermination and provides (at least locally) a unique
lifting γ̃ of γ such that γ̃(t0) = a.

For example, if E is the frame bundle of B (or a principal subbundle), a connection allows
one to obtain along γ a moving frame γ̃(t), well determined by its value at t0. If the connection
is better than the others, so will be this moving frame.

Definition. A connection on the submersion π is a field of horizontal spaces, i. e. a Pfaffian
system H on E such that Ha is, for every a ∈ E, a complementary subspace in TaE of the
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vertical space Va = KerTaπ = Ta

(
π−1(a)

)
; in other words, Taπ|Ha is an isomorphism onto

Tπ(a)B.
The datum of Ha is equivalent to that of the projection of TaE onto Va parallel to Ha, chosen

by Dieudonné [12] to define a connection; it can be denoted v 7→ vV (vertical component of the
tangent vector v). The unique lifting (“horizontal lifting”) γ̃ announced will be defined by the
initial condition and by the fact that the derivative ˙̃γ(t) is horizontal for every t, which writes
(notation of [24])

Dγ̃

dt
:= ˙̃γ(t)V = 0. (2)

The connection H “reads” indeed as follows in a fibred chart ϕ̃ of E over ϕ, with image the
open U × V of Rn × Rr: for every a ∈ Dom ϕ̃, if ϕ̃(a) = (x, y), the image of Ha by Taϕ̃ is
the graph of a linear map −Γ(x, y) of Rn into Rr: one defines in that way the Christoffel map
Γ : U ×V → L(Rn,Rr) of the connection H in the fibred chart ϕ̃, and it is smooth because H is;
the equation vV = 0 expressing that v ∈ TE is horizontal writes therefore δy + Γ(x, y)δx = 0,
where

(
(x, y), (δx, δy)

)
= T ϕ̃(v). Hence, if γ is a path in Domϕ and x(t) := ϕ ◦ γ(t), a lifting

γ̃(t) = ϕ̃−1
(
x(t), y(t)

)
of γ with values in Dom ϕ̃ is horizontal if and only if the path t 7→ y(t)

verifies the differential equation

y′(t) + Γ
(
x(t), y(t)

)
x′(t) = 0

expressing (2); this enables one to use Cauchy’s theorem on differential equations to obtain the
local existence and uniqueness of the lifting γ̃ taking a given value at time t0.

Its global existence is ensured for example when π is proper, i. e. when π−1(K) is compact
for every compact K of B: indeed, in that case, the solution γ̃ of (2) can not “go to infinity” at
time t ∈ Dom γ. Let us deduce from this a fundamental result in differential topology:

Theorem (Ehresmann). If the submersion π is proper, then it is a fibration15.
Proof. For every b ∈ B, there exist an open subset Ω 3 b of B and a connectionH on π|π−1(Ω):

to see it, cover the compact manifold π−1(b) by the domains of finitely many fibred charts ϕ̃j

and take Ω =
⋂

Domϕj , where the ϕj ’s are the charts of B defined by the ϕ̃j ’s; restricting the
ϕ̃j ’s, we may assume Domϕj = Ω for every j, so that the Dom ϕ̃j ’s form a finite cover of π−1(Ω)
and that there exists [11] a smooth partition of unity θj subordinate to this cover; for each j,
there is a connection Hj on π|Dom ϕ̃j , for example that whose Christoffel map in the fibred chart
ϕ̃j is identically zero; denoting by v 7→ vj,V the corresponding projection, one can then take the
connection H whose projection TaE → Va is defined by vV :=

∑
j θj(a)vj,V for each a ∈ π−1(Ω)

(as usual, the sum is on those j’s such that a ∈ Dom ϕ̃j).
Restricting Ω, one may assume that there exists a chart ϕ of B with Domϕ = Ω such

that ϕ(Ω) is an open ball of centre 0 = ϕ(b) in Rn. For each y ∈ Ω, one therefore defines
a path γy : [0, 1] → Ω joining y to b by γy(t) := ϕ−1

(
(1 − t)ϕ(y)

)
; for all x ∈ π−1(y), the

path γy admits a unique horizontal lift γ̃x : [0, 1] → E such that γ̃x(0) = x, and the map
x 7→ γ̃x(1) of π−1(y) in π−1(b), called parallel transport from time 0 to time 1 along the path
γy for the connection H, is obviously bijective (its inverse is obtained by lifting t 7→ γy(1− t));
as solutions of differential equations depend smoothy on initial conditions and parameters, the
map x 7→ γ̃x(1) is a diffeomorphism, and so is the map h of π−1(Ω) onto Ω × π−1(b) given by
h(x) :=

(
π(x), γ̃x(1)

)
, that is the required local trivialisation.

15Conversely, a fibration with compact fibres is obviously proper. As in the definition of a fibration, if one

wants the typical fibre to be unique up to diffeomorphism, B must be assumed connected.
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Remark. This very robust theorem holds, with the same proof, in the Banach framework.
Proceeding as in the first part of the proof, one can see that a submersion defined on a para-
compact manifold (as in real life) admits a connection, which can be used in the second part of
the proof, Ω being the domain of any chart ϕ vanishing at b whose image is a ball.

Example. The contact structure K1(M,R) is a connection for the fibration π : j1
af 7→ daf

of J1(M,R) onto T ∗M . We shall go back to it in the section on curvature.

5. Integral of differential forms, pullbacks, exterior derivative

Direct images of paths, curvilinear integral, pullback of functions and 1-forms.
Let g be a smooth map of a manifold M into a manifold N .

The (direct) image under g of a path γ in M is the path g∗γ := g ◦ γ in N ; similarly, the
inverse image (or pullback) by g of a real function f on N is the real function g∗f := f ◦ g on
M .

When γ is defined on a segment [t0, t1] (γ is then called an arc), the (curvilinear) integral
along γ of a Pfaffian form α on M is by definition

∫

γ
α :=

∫ t1

t0

αγ(t)

(
γ̇(t)

)
dt,

where αγ(t) ∈ T ∗γ(t)M = (Tγ(t)M)∗ denotes the value of α at γ(t). This integral is invariant
under parameter changes : if ϕ : [s0, s1] → [t0, t1] verifies ϕ(sj) = tj , then

∫
γ◦ϕ α =

∫
γ α; when

α is the differential df of a real function f on M , since dfγ(t)

(
γ̇(t)

)
= (f ◦ γ)′(t),

∫

γ
df = f

(
γ(t1)

)− f
(
γ(t0)

)
(mean value formula). (3)

A Pfaffian form α is determined by the integrals
∫
γ α; indeed, for every x ∈ M and every

v ∈ TxM , there exists16 an arc γ : [0, 1] → M such that γ̇(0) = v; if γε : [0, 1] → M is given by
γε(t) := γ(εt), then lim

ε→0
ε−1

∫
γε

α = lim
ε→0

∫ 1
0 αγ(εt)

(
γ̇(εt)

)
dt = αγ(0)

(
γ̇(0)

)
= αxv.

The pullback by g of a Pfaffian form β on N is the Pfaffian form g∗β on M such that∫
γ g∗β =

∫
g∗γ β for every arc γ in M ; it is given by the formula

(g∗β)x = βg(x) ◦ Txg.

For f : M → R, the chain rule, in intrinsic terms

T (f ◦ g) = (Tf) ◦ Tg,

therefore writes g∗df = d(g∗f).

Differential forms, their integral on parametrised rectangles and their pullbacks.
A differential form of degree k or differential k-form, or k-form α on a manifold M is a field
of alternate k-linear forms αx : (TxM)k → R, i. e. a smooth section of the vector bundle∧k T ∗M over M whose fibre over x ∈ M is the space Lk

alt(TxM,R) of alternate k-linear forms
on TxM ; an atlas of this vector bundle consists (naturally) of the natural charts

∧k T ∗ϕ :
αx 7→

(
ϕ(x), (Txϕ)∗ αx

) ∈ Imϕ × Lk
alt(Rn,R), where ϕ is a chart of M with values in Rn (the

linear tangent map Txϕ therefore maps TxM onto Tϕ(x)Rn = Rn), αx ∈ Lk
alt(TxM,R) and

(Txϕ)∗ αx(v1, . . . ,vk) := αx

(
(Txϕ)−1v1, . . . , (Txϕ)−1vk

)
for v1, . . . ,vk ∈ Rn.

16Take a chart ϕ of M such that ϕ(a) = 0 and a path of the form ϕ◦γ(t) = θ(t ϕ∗v) t ϕ∗v, where ϕ∗v = Txϕ(v)

and θ : Im ϕ → [0, 1] is C∞ with compact support, equal to 1 near 0.
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For every smooth map ρ : [0, 1]k → M , the integral of α along the parametrised rectangle ρ

of dimension k is by definition∫

ρ
α :=

∫

[0,1]k
αρ(t)

(
∂1ρ(t), . . . , ∂kρ(t)

)
dt

(integral with respect to Lebesgue measure), where ∂jρ(t) ∈ Tρ(t)M is the partial derivative of
ρ with respect to the jth factor and αρ(t) ∈ Lk

alt(Tρ(t)M,R) denotes the value of α at ρ(t).
A k-form α is determined by the integrals

∫
ρ α; indeed, for x ∈ M and v1, . . . ,vk ∈ TxM ,

there exists17 a parametrised rectangle ρ : [0, 1]k → M such that ∂jρ(0) = vj for every j; if
ρε : [0, 1]k → M is given for 0 < ε ≤ 1 by ρε(t) := ρ(εt), then lim

ε→0
ε−k

∫
ρε

α = αx(v1, . . . ,vk) as
for k = 1.

Given a smooth map g : M → N between manifolds, the pullback by g of a k-form β on N is
the k-form g∗β on M such that

∫
ρ g∗β =

∫
g∗ρ β for every parametrised rectangle ρ of dimension

k in M , using the notation g∗ρ := g ◦ ρ; it is given by the formula

(g∗β)x = βg(x) ◦ (Txg)k,

where (Txg)k(v1, . . . ,vk) := (Txg(v1), . . . , Txg(vk)) for v1, . . . ,vk ∈ TxM .

The exterior derivative. That of a Pfaffian form α on M is the 2-form dα on M such that∫

ρ
dα =

∫

∂ρ
α (4)

for every C2 parametrised rectangle ρ : [0, 1]2 → M , where ∂ρ denotes the oriented boundary of
ρ, obtained by concatenation of [0, 1] 3 s 7→ ρ(s, 0), [0, 1] 3 s 7→ ρ(1, s), [0, 1] 3 s 7→ ρ(1 − s, 1)
and [0, 1] 3 s 7→ ρ(0, 1− s); it is given par

dαρ(t)

(
∂1ρ(t), ∂2ρ(t)

)
= ∂1

(
αρ(t)∂2ρ(t)

)− ∂2

(
αρ(t)∂1ρ(t)

)
. (5)

More generally, for each k ≥ 1, the exterior derivative of a k-form α on M is the (k + 1)-form
dα on M verifying (4) for every parametrised rectangle ρ of dimension k + 1, setting

∫

∂ρ
α :=

k+1∑

i=1

(−1)i+1
(∫

∂ρ1
i

α−
∫

∂ρ0
i

α
)
,

where the “faces” ∂ρj
i of ρ are the parametrised rectangles of dimension k defined by

∂ρj
i (s) := ρ

(
(s`)`<i, j, (s`)`≥i

)
, s = (s1, . . . , sk) ∈ [0, 1]k, j = 0, 1;

the identity (5) is the particular case k = 1 of the formula18

dαρ(t)

(
∂1ρ(t), . . . , ∂k+1ρ(t)

)
=

k+1∑

i=1

(−1)i+1∂i

(
αρ(t)

((
∂`ρ(t)

)
`<i

,
(
∂`ρ(t)

)
`>i

))
, (6)

which follows from (4), the mean value formula and the Fubini theorem: indeed, if one alleviates
notation by setting for example α

(
∂1ρ(t), . . . , ∂kρ(t)

)
:= αρ(t)

(
∂1ρ(t), . . . , ∂kρ(t)

)
, then

∫

∂ρ1
i

α−
∫

∂ρ0
i

α =

=
∫

[0,1]k

(
α
(
∂sjρ

(
(s`)`<i, 1, (s`)`≥i

))
1≤j≤k

− α
(
∂sjρ

(
(s`)`<i, 0, (s`)`≥i

))
1≤j≤k

)
ds =

17Same proof as for k = 1, replacing tϕ∗v by
P

tjϕ∗vj .
18Valid when ρ is a C2 map with values in M defined on an open subset or an “open subset with corners” of

Rk, for example [0, 1]k.
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=
∫

[0,1]k

∫ 1

0
∂τα

(
∂sjρ

(
(s`)`<i, τ, (s`)`≥i

))
1≤j≤k

dτ ds =

=
∫

[0,1]k+1

∂iα
((

∂`ρ(t)
)
`<i

,
(
∂`ρ(t)

)
`>i

)
dt

where t :=
(
(s`)`<i, τ, (s`)`≥i

)
. Naturally, the “miracle” is that the right-hand side of (6) depends

only on the ∂jρ(t)’s: this can be checked in a chart, which reduces the problem to the case where
M is an open subset U of Rn, and using the fact that, then, ∂i∂`ρ = ∂`∂iρ.19

This definition of the exterior derivative is not too intrinsic, but it has the merit of showing
that a k-form is meant to be integrated on objects of dimension k, exterior derivation appearing
as the dual (“coboundary”) of the “oriented boundary” ∂ via the Stokes formula20 (4)—which
generalises (3) and yields easily the other “Stokes formulae”.

It follows at once from the definitions of the pullback and the exterior derivative that

d(g∗β) = g∗dβ (7)

for every smooth map g : M → N between manifolds and every differential form β on N .
Moreover, for every differential k-form α on M ,

ddα = 0. (8)

Indeed, the integral of ddα on every parametrised rectangle ρ : [0, 1]k+2 → M is zero since by

definition
∫

ρ
ddα =

k+2∑

i=1

(−1)i+1
(∫

∂ρ1
i

dα −
∫

∂ρ0
i

dα
)

=
k+2∑

i=1

(−1)i+1
(∫

∂∂ρ1
i

α −
∫

∂∂ρ0
i

α
)
, in other

words
∫

ρ
ddα =

k+2∑

i=1

(−1)i+1
k+1∑

j=1

(−1)j+1
(∫

∂(∂ρ1
i )1j

α−
∫

∂(∂ρ1
i )0j

α−
∫

∂(∂ρ0
i )1j

α +
∫

∂(∂ρ0
i )0j

α
)
,

a sum where “each face of dimension k of ρ appears twice and with opposite signs21” as

∂(∂ρ`
i)

m
j = ∂(∂ρm

j )`
i−1, 1 ≤ j < i ≤ k + 2, `, m ∈ {0, 1}.

A differential form β is closed when dβ = 0; it is exact when it is the exterior derivative β = dα

of a differential form, called a primitive of β and obviously unique up to the addition of a closed
form22; the formula (8) therefore means that every exact form is closed.

6. Flows, Lie derivative and Lie bracket

Flows and Lie derivative. To every smooth vector field X on the manifold M is associated
its flow or one-parameter (pseudo)group gt

X , defined as follows: for every a ∈ M , the map
t 7→ gt

X(a) is the path in M that is the maximal23 solution of the differential equation ẋ = X(x)
(“integral curve24 of X ”) passing through a at time t = 0.

The theory of differential equations implies that the definition domain of gX : (t, a) 7→ gt
X(a)

is an open subset of R×M and that gX is as smooth as X; clearly, gs
X

(
gt
X(a)

)
= gs+t

X (a) when

19In that case, α is identified to a map of U into Lk
alt(Rn,R) (its second component) and dα : U → Lk+1

alt (Rn,R)

is given by dα(x)(v1, . . . ,vk+1) =
Pk+1

i=1 (−1)i+1Dα(x)(vi) ((v`)`<i, (v`)`>i), x ∈ U , v1, . . . ,vk+1 ∈ Rn.
20Whitney even constructed the theory of differential forms out of it [28].
21If k = 1, these faces correspond to the edges of the cube [0, 1]3.
22When one adds two sections α and β of a vector bundle E, it is of course fibrewise addition, i. e. (α+β)(x) =

α(x) + β(x) in Ex.
23That is, defined on an interval as large as possible.
24Terminology in slight conflict with “integral manifold”, since the integral curves are parametrised.
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the left-hand side makes sense or, equivalently, for a ∈ Dom(gt
X) ∩ Dom(gs+t

X ); in particular,
since g0

X = idM , each gt
X is a diffeomorphism of the open subset Dom gt

X ⊂ M onto the open
subset Dom g−t

X , and (gt
X)−1 = g−t

X .
If X has compact support, the solutions of ẋ = X(x) cannot “go to infinity in finite time”;

therefore, Dom gX = R×M and gX is a smooth action of the additive group R on M , meaning
that t 7→ gt

X is a homomorphism of R into the group of diffeomorphisms of M onto itself; in
that case, X (or its flow) is said to be complete.

The Lie derivative of a tensor field25 τ on M with respect to X is by definition

LXτ :=
d

dt
gt ∗
X τ

∣∣∣
t=0

, (9)

that is a tensor field of the same nature as τ ; for example, the Lie derivative of a real function f

on M is the real function on M that is the (interior) product or contraction df(X) of df by X:

LXf = df(X) : x 7→ dxf(Xx).

For k > 0, the Lie derivative of a differential k-form α on M verifies the Cartan formula26

LXα = d(αX) + (dα)X, (10)

where αX, (dα)X denote27 the interior products (or contractions) x 7→ αxXx and x 7→ (dαx)Xx

of α and dα by X; the proof is very easy: for all x ∈ M and (v1, . . . ,vk) ∈ TxM , there exists
ρ1 : (Rk, 0) → (M,x) such that vj = ∂jρ1(0), and one can take ρ(t) := gt1

X ◦ ρ1(t2, . . . , tk+1) and
t = 0 in (6). Here is an important application:

Poincaré lemma. Every closed differential form α of degree k ≥ 1 on M is locally exact:
each a ∈ M has an open neighbourhood Ω such that α|Ω is exact.

Indeed, if Ω is the domain of a chart ϕ vanishing at a whose image is a ball B of Rn, let X be
the vector field on Ω that is the pullback by ϕ of the radial field Yy := y on B; for every x ∈ Ω,
the points gt

X(x) = ϕ−1
(
etϕ(x)

)
with t ≤ 0 are well defined and, by (10), since dα = 0,

αx = (g0 ∗
X α)x = (g0 ∗

X α)x − lim
t→−∞(gt ∗

X α)x =
∫ 0

−∞

d

dt
(gt ∗

X α)x dt =
∫ 0

−∞
(gt ∗

X LXα)x dt =

=
∫ 0

−∞

(
gt ∗
X d(αX)

)
x
dt =

∫ 0

−∞
d

(
gt ∗
X (αX)

)
x
dt =

(
d

∫ 0

−∞
gt ∗
X (αX) dt

)
x
,

where the last integral is in each fibre28.

The de Rham cohomology. For k > 0, the quotient of the vector space of closed forms of
degree k on M by the vector space of exact forms of degree k is the kth de Rham cohomology space
Hk(M,R); as every alternate k-linear form on a space of dimension < k is zero, Hk(M,R) = {0}
for k > dimM ; one denotes by H0(M,R) the space of locally constant functions on M and
H•(M,R) :=

⊕

k≥0

Hk(M,R).

Pullback of vector fields, Lie brackets. Given a smooth map h : M → N between
manifolds, a pullback of a vector field Y on N by h, if it exists, is a vector field X on M such

25Here, a differential form of degree k or, as a little later, a vector field.
26Though Élie undoubtfully knew and used it [4], it took some time for the Lie derivative—as for many

primitive notions—to be recognised as such and it is Henri who wrote (10) under this form. One can, if one really

wants to, take it as an intrinsic but incomprehensible definition of the exterior derivative.
27With the notation introduced when wrote the Cartan system of Jk(Rn,Rp).
28One can find it more secure to work in the chart ϕ and take as variable s = et.
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that h “maps the integral curves of X onto those of Y ”, meaning that h ◦ gt
X = gt

Y ◦ h; as this
relation holds for t = 0, it is equivalent to the one obtained by derivating it with respect to
time, which writes Txh(Xx) = Yh(x) for every x ∈ X; one therefore sees that if h is etale, i. e. if
all the Txh’s are isomorphisms, then Y has a unique pullback by h, denoted by h∗Y and given
by the formula

(h∗Y )x = (Txh)−1Yh(x).

The formula (7) therefore has a meaning when τ is a vector field Y on M , and29

LXY = [X, Y ],

Lie bracket of the vector fields X and Y , such that

L[X,Y ]f = LXLY f − LY LXf

for every real function f on M . The Jacobi identity
[
[X, Y ], Z

]
+

[
[Y, Z], X

]
+

[
[Z,X], Y

]
= 0

follows, making the C∞ vector fields on M an archetypical Lie algebra.
By the formula for the derivation of a product and (9), for every choice of the function f , the

tensor field τ , the vector fields X, Y and the differential form α of degree k > 0 on M , one has

LX(fτ) = (LXf)τ + fLXτ

LX(αY ) = (LXα)Y + αLXY =
= d(αX)Y + (dα)XY + α[X, Y ].

(11)

If ϕ is a chart of M with values in Rn, setting Xϕ(x) := Txϕ(Xϕ−1(x)) ∈ TxRn = Rn for every
vector field X on M and every x ∈ Im ϕ, one has

[X, Y ]ϕ(x) = DYϕ(x)Xϕ(x)−DXϕ(x)Yϕ(x). (12)

7. Some applications of the Cartan formula

Infinitesimal contact transformations. Let α be a contact form on a manifold V —recall
that this means that TxM = Kerαx ⊕Ker dαx for every x ∈ V ; let K be the associated contact
structure Kx := Kerαx. An infinitesimal contact transformation or Lie field for K is a vector
field X on V whose flow gt := gt

X preserves K, meaning that Txgt(Kx) = Kgt(x) for every
(t, x) ∈ Dom gX : this is expressed by calling the maps gt contact transformations or (local)
automorphisms of K.

Theorem (Libermann30). Under these hypotheses, a Lie field X is determined by its Hamil-
tonian −αX with respect to α, and every C2 real function F on V is the Hamiltonian of a C1

Lie field31 XF . In particular, if α is C∞, the map F 7→ XF is an isomorphism of C∞(V,R)
onto the space of C∞ Lie fields for K, an isomorphism whose inverse is X 7→ −αX.

Indeed, X is a Lie field if and only if its flow gt verifies (gt∗α)x = µt(x)αx for every x ∈ Dom gt,
which (after derivation with respect to t) writes LXα = λα, where λ is a real function on V ; by
(10), the relations between X and F := −αX are therefore expressed for each x ∈ V by the two
equations

−αxXx = F (x) (13)

−dxF + dαx Xx = λ(x)αx; (14)

29“Derivation of a product” LXLY f = LLXY f + LY LXf .
30Having always [9] attributed it to Sophus Lie, I nearly asked who was that Bermann the first time it was

rightly [21] credited to Paulette Libermann in my presence.
31The group automorphisms of K therefore is huge, the vector fields XF with F compactly supported (for

example) being complete.
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if Xx = Yx + Zx in the decomposition TxV = Kx ⊕Ker dαx, (13) determines Zx knowing F (x)
and vice versa since αx|Ker dαx is an isomorphism; as for (14), it writes

−dxF |Ker dαx = λ(x)αx|Ker dαx

dxF |Kx = (dαx Yx)|Kx ;

the first equation determines λ(x) knowing dxF |Ker dαx and vice versa, and the second determines
Yx knowing dxF |Kx and vice versa, as the nondegenerate bilinear form dαx|(Kx)2 induces the
isomorphism v 7→ (dαxv)|Kx of Kx onto its dual.

Application: local theory of the first order partial differential equations. Under
these hypotheses, given F : V → R, let E := F−1(0). Two preliminary observations:

i) as there is no nondegenerate alternate bilinear form on a space of odd dimension, V is
of odd dimension 2n + 1

ii) an integral manifold W of K is of dimension at most n; indeed, if ι : W ↪→ V denotes the
inclusion, the relation ι∗α = 0 expressing that W is an integral manifold implies that
ι∗dα = d(ι∗α) = 0, i. e. that each tangent space TxW is included in its orthogonal for
the nondegenerate bilinear form dαx|(Kx)2 , hence dimTxW ≤ 2n−dimTxW ; the integral
manifolds of dimension n are the Legendre manifolds of K.

For every x ∈ E,

iii) the previous proof shows that X = XF vanishes at x if dxF = 0, since then Yx = Zx = 0
iv) it follows from (13)–(14) and from the antisymmetry of dαx that dxF (Xx) = 0; hence,

XF is tangent at x to E for dxF 6= 0 (F is a submersion in an open neighbourhood U of
x, therefore U ∩ E is a submanifold of codimension 1 with tangent space Ker dxF at x)

v) it follows from (13) that Xx belongs to Kx.

Assertions (iii)–(iv) imply that one has gt
X(E ∩Dom gt

X) ⊂ E for every t; assertion (v), together
with the fact that the maps gt

X preserve K, therefore yields the following facts:

vi) for every integral manifold W0 ⊂ E of K and every a ∈ W0 with Xa 6∈ TaW0, there
exists an open subset Ω 3 (0, a) of R × W0 such that the map j : Ω → E defined by
j(t, x) := gt

X(x) is a diffeomorphism onto an integral manifold W of K, which verifies
therefore dimW = dim W0 + 1

vii) this imposes dimW0 < n by (ii); hence, a geometric solution of the generalised partial
differential equation E, i. e. a Legendre manifold L contained in E, verifies Xx ∈ TxL

for every x ∈ L

viii) if dimW0 = n − 1 (one then calls (E, W0) a generalised Cauchy problem, well-posed at
a), then W is a geometric solution of E

ix) conversely, by (vii), every geometric solution W of E is obtained in this fashion in the
neighbourhood of each a ∈ W where Xa is nonzero (just take for W0 a hypersurface of
W passing through a with Xa /∈ TaW0); this proves the local existence and uniqueness
of the solution of a generalised Cauchy problem.

If V = J1(Rn,R), K = K1(Rn,R) and, denoting by (t, x) ∈ R × Rn−1 the points of Rn, the
equation E is of the form ∂ty = g(t, x, y, ∂xy), then a well-posed classical Cauchy problem is the
datum of the value y0(x) of the unknown function for t = 0; this does determine the generalised
Cauchy datum W0 =

{(
0, x, y0(x), g(0, j1

xy0), Dy0(x)
)} ⊂ E, which defines at each of its points

a well-posed problem whose local generalised solutions W are holonomic sections of the source
projection J1(Rn,R) → Rn contained in E, jets order 1 of the local solutions of the Cauchy
problem.
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Hamiltonian vector fields on a symplectic manifold. Paulette Libermann is not foreign
[21] to their intrinsic definition. A symplectic manifold is the pair consisting of a manifold V

and a symplectic form on V , i. e. a closed 2-form ω such that every ωx ∈ L2
alt(TxV,R) is

nondegenerate (the dimension of V must therefore be even). A vector field X on V is symplectic
when its flow gt = gt

X preserves ω, meaning that gt ∗ω = ω in Dom gt for every t (the maps gt

are therefore symplectic tranformations of ω). As this relation is verified if t = 0, this amounts
to saying that 0 = d

dtg
t ∗ω = gt∗LXω for every t, i. e. that LXω = 0; since ω is closed, it follows

from (10) that this is the case if and only if the Pfaffian form ωX is closed.
When it is exact, ωX = dH, one says that X is Hamiltonian and that the function H is a

Hamiltonian of X; il determines X, and each real function H on V is the Hamiltonian of a unique
Hamiltonian vector field XH : indeed, for each x ∈ V , the equation ωxv = dxH has a unique
solution v ∈ TxV since ωx is nondegenerate. The group of (global) symplectic transformations
of ω therefore is huge too, since it contains the maps gt

XH
with H compactly supported.

As LXH
H = dH(XH) = ω(XH , XH) = 0, the flow of X = XH preserves H, meaning that

H
(
gt
X(x)

)
= H(x) for every (t, x) ∈ Dom gX (“conservation of energy”); one also calls H a first

integral of XH . Since LXH
K = dK(XH) = ω(XK , XH) = −LXK

H for all real functions H and
K on V , the Poisson bracket {H,K} := LXH

K (“Poisson parentheses”) is antisymmetric; this
yields the (trivial but quite useful) Hamiltonian version of a theorem by Emmy Noether: if “XK

is an infinitesimal symmetry of H ”, meaning that H is a first integral of XK , then K is a first
integral of XH . The Poisson bracket lifts to functions the Lie bracket of vector fields32 in the
sense that X{H,K} = [XH , XK ]; il satisfies (therefore) the Jacobi identity, endowing C∞(V,R)
with a Lie algebra structure if ω is C∞.

In the “concrete” case studied since Lagrange at least [22], V is the cotangent bundle (“phase
space”) T ∗M of a manifold (“configuration space”) M , endowed with its canonical symplectic
structure ωM , unique 2-form on T ∗M whose pullback by the projection J1(M,R) → T ∗M is the
exterior derivative of the canonical contact form dy0 − y1 dx defining K1(M,R).

8. Curvature

Curvature of a connection. If H is a connection on a submersion
E

↓ π

B

, every vector field

X on an open subset U ⊂ B lifts to a unique horizontal vector field X̃ on π−1(U), given by
X̃a = (Taπ|Ha)

−1Xπ(a). A remarkable fact of Nature is that, if Y is another vector field on U ,
the vertical component ([X̃, Ỹ ]a)V of the Lie bracket [X̃, Ỹ ], at each point a ∈ π(U), depends
only on X̃a, Ỹa ∈ Ha, i. e. of Xπ(a), Yπ(a) ∈ Tπ(a)B; one defines therefore an alternate bilinear
map Ra : Tπ(a)B × Tπ(a)B → Va, the curvature tensor of H at a, by the formula

Ra(Xπ(a), Yπ(a)) := ([X̃, Ỹ ]a)V . (15)

If Γ is the Christoffel map of H in a fibred chart ϕ̃ of π over the chart ϕ of B, it follows from
(12) that

Ra(v1,v2) = DΓ(z)
(
x2,−Γ(z)x2

)
x1 −DΓ(z)

(
x1,−Γ(z)x1

)
x2 with

{
z := ϕ̃(a)

xj := Tπ(a)ϕ(vj)
(16)

which proves our “fact of Nature” (see the next paragraph for a nicer argument).

32Similarly, if α is a contact form, the Lie bracket of Lie fields can be lifted to real functions by (the inverse

of) the isomorphism X 7→ αX, the bracket so obtained being called the Lagrange bracket, it seems.
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When E is a vector bundle over B, the identification of Va to the fibre Eπ(a) makes Ra into
an element of L2

alt(Tπ(a)B,Eπ(a)); in particular, if E = TB, one is in the perhaps more familiar
situation33 where Ra takes its values in Tπ(a)B. If E is a affine bundle, it takes its values in
the vector space ~Eπ(a) underlying the fibre. More generally, when E is a principal bundle with
structural group G, the datum of a enables one to identify Eπ(a) to G by the inverse of the
bijection G 3 g 7→ ga, and therefore identify Va to the Lie algebra of G (the tangent space
g := T1G of G at 1) by the inverse of the differential at 1 of the previous bijection; in this
identification, one therefore has Ra ∈ L2

alt(Tπ(a)B, g).

“Curvature” of a Pfaffian system. If P is a Pfaffian system34 on a manifold V , one can
replace in the previous construction the “concrete” vertical space Va by its “abstract” version

νPa := TaV/Pa

(which defines a vector bundle νP over V , the normal bundle of P) and denote by v 7→ vν

the canonical projection TaV → νPa. The previous fact of Nature generalises: one defines the
“curvature tensor” Ra ∈ L2

alt(Pa, νPa) of the Pfaffian system P at a ∈ V by the formula

Ra(Xa, Ya) := ([X, Y ]a)ν , (17)

where X, Y vary among the sections of the vector bundle P over open subsets U 3 a of V (vector
fields on U verifying Xx, Yx ∈ Px or, equivalently, (Xx)ν = (Yx)ν = 0 for every x).

To prove our “fact of Nature”, one can consider locally P as a connection35 and use (16)
or, in a more elegant way, remark that if one multiplies for example Y by a real function f

defined in the neighbourhood of a, (11) yields [X, fY ]a = f(a)[X, Y ]a +Lxf(a)Ya and therefore
([X, fY ]a)ν = f(a)([X, Y ]a)ν since (Ya)ν = 0, hence ([X, fY ]a)ν = ([X, Y ]a)ν if f(a) = 1.

Proposition. For every integral manifold W of P, the curvature tensor Ra is identically zero
on TaW × TaW for all a ∈ W .

Indeed, if X,Y are vector fields on a neighbourhood of a in W , it is easy to extend them
locally to sections X̄, Ȳ of P defined in the neighbourhood of a in V ; by definition, X̄a = Xa,
Ȳa = Ya and, moreover, [X̄, Ȳ ]a = [X, Y ]a ∈ TaW ⊂ Pa since, near a, the flow of X̄ coincides
on W with that of X. It follows that Ra(Xa, Ya) = Ra(X̄a, Ȳa) = ([X̄, Ȳ ]a)ν = ([X,Y ]a)ν = 0,
hence the proposition since (Xa, Ya) can be any pair of vectors tangent to W at a.

Definition. An integral element of P at a ∈ V is a plausible candidate to be the tangent
space at a of an integral manifold of P, i. e. a vector subspace Ia of Pa such that Ra|Ia×Ia = 0.
The Cartan-Kähler theorem for Pfaffian systems36 [7, 12, 1, 23] asserts that, in the analytic
case, every “generic” integral element Ia of P is indeed of the form Ia = TaW for at least one
(analytic) integral manifold W of P. Here are two extreme examples where this general result
is not needed.

33For a general vector bundle, when H is linear, i. e. when the parallel transport from one time to another

along any path is (which amounts to saying that the Christoffel maps Γ(x, y) in the charts of the vector bundle

are linear in y), it follows from (16) that the curvature Ra depends linearly on a viewed as an element of

Eπ(a); setting b = π(a), Ra(v,w) therefore is the value at (a,v,w) ∈ Eb × TbB × TbB of a trilinear map

Rb with values in Eb; if E = TB, the familiar monster of Riemannian geometry [24] is the quadrilinear form

(TbB)4 3 (a,v,w,h) 7→ Rb(a,v,w) · h (scalar product).
34That is a sub-vector bundle of the tangent bundle TV , the stupid cases of TV and of its zero section being

excluded.
35See the proof of the Frobenius theorem hereafter.
36More Cartan than Kähler in this case [2]; it is astounding that Élie Cartan, from three examples, could have

the idea of so general a result and see how to “corner” the required integral manifold.
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Example. Completely integrable Pfaffian systems. They are those Pfaffian system P
such that Ra = 0 for every a ∈ V (in other words, Pa is an integral element). For example, the
Pfaffian system V defined by the vertical spaces of a submersion is completely integrable (and
completely integrated, the fibres being integral manifolds). A completely integrable connection
is sometimes said to be flat since its curvature is everywhere zero.

Frobenius theorem. If a Pfaffian system P on V is completely integrable, there does exist,
for every a ∈ V , an integral manifold W of P such that TaW = Pa (hence, for dimensional
reasons, TxW = Px for every x ∈ W if W is connected); moreover, this integral manifold is
locally unique: if W ′ is another one, there exists an open neighbourhood U of a in V such that
W ∩ U = W ′ ∩ U (in words, W and W ′ have the same germ37 at a).
Hence, the relation “there exists a connected integral manifold of P containing a and a′ ” between
points a, a′ of V is an equivalence relation, whose equivalence classes are called the leaves of
the foliation of V defined by P; they inherit from their definition a structure of connected
manifold (injectively immersed) of the same dimension as the Pa’s, but they are not (embedded)
submanifolds in general. Even for dimPa = 1 (“line field”, always completely integrable38 since
the Ra’s are alternate), the global study of foliations is a very difficult subject to which, after
Ehresmann and Reeb, contributed Haefliger, Bott, Novikov, Thurston among others and, in the
case of line fields, all the great names of dynamical systems since Poincaré.

Local structure of the foliation defined by a completely integrable Pfaffian system.
For every a ∈ V , there exist open subsets U ⊂ Rn, U ′ ⊂ Rp and a chart (“plaque family”) ψ of
V with a ∈ Domψ and Imψ = U ×U ′ such that the leaves of the foliation of Domψ defined by
P are the subsets ψ−1(U×{y0}) with y0 ∈ U ′; each of these local leaves (“plaques”) is obviously
contained in one of the leaves of the global foliation, but this global leaf can come back and cut
Domψ following other plaques, whose union can even be dense39 in Domψ.

Proof à la Dieudonné [10] of the Frobenius theorem and of the existence of plaque families.
Let ϕ be an arbitrary chart of V at a; composing it with a translation and a permutation of
coordinates, one can assume that it takes its values in Rn×Rp, that ϕ(a) = 0 and that Taϕ(Pa)
is horizontal, i. e. complementary of the vertical space {0}×Rp of the projection π : (x, y) 7→ x.
Restricting Domϕ, it follows that all the spaces Hϕ(z) := Tzϕ(Pz) are horizontal; therefore,
there exists a Christoffel map Γ : Imϕ → L(Rn,Rp), such that H(x,y) is the graph of −Γ(x, y)
for every (x, y) ∈ Imϕ. The integral manifolds of maximal dimension of P in Domϕ are the
images by ϕ−1 of those of the connection H so defined, which integral manifolds are locally the
graphs of solutions y = f(x) of the “total differential equation”

dy

dx
+ Γ(x, y) = 0; (18)

if such a solution f takes the value y0 at 0, then, for every x ∈ Rn such that the segment [0, x]
is contained in Dom f , it follows that f(tx) is for 0 ≤ t ≤ 1 the value Rt(x, y0) at time t of

the solution of the differential equation
dy

dt
+ Γ(tx, y)x = 0 equal to y0 at t = 0. As Rt(x, y0)

exists for every t if x = 0, the theory of differential equations [8] tells us that there are open
balls U ⊂ Rn and U ′ ⊂ Rp centred at 0 such that, for x ∈ U , the map y0 7→ R1(x, y0) is a

37In the beginning, Ehresmann used here too the word jet, little recommendable in this case except in the

analytic framework.
38The theory therefore includes the study of orbits of a vector field X on V (considering the line field x 7→ RXx

on the open subset of V where X does not vanish), images of its integral curves.
39If α is an irrationnal number, all the orbits of the constant vector field Xx := (1, α) ∈ R2 = TxT2 on the

torus T2 = R2/Z2 are dense.
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diffeomorphism of U ′ onto an open subset of Rp; in other words, h : (x, y0) 7→
(
x, R1(x, y0)

)
is

a diffeomorphism of U × U ′ onto an open subset of U × Rp.
We now just have to check that, for every y0 ∈ U ′, the unique candidate f : x 7→ R1(x, y0)

to be in U the solution of (18) equal to y0 for x = 0 is indeed a solution of (18): one will
get the plaque family ψ := h−1 ◦ ϕ and, for y0 = 0, the Frobenius theorem. Now, derivating
with respect to x the identity ∂

∂tf(tx) + Γ
(
tx, f(tx)

)
x = 0 and using (16), one can see that

t 7→ tDf(tx) and t 7→ −tΓ
(
tx, f(tx)

)
verify the same differential equation on [0, 1] and take the

same value 0 ∈ L(Rn,Rp) at t = 0; therefore, they are equal, hence the required result for t = 1.
Remarks. For line fields, this is just the theory of “time dependent” differential equations.

The construction performed in general (before the final verification, which uses the curvature)
is a local version of the proof of Ehresmann’s theorem. The vanishing of curvature is imposed
by the symmetry of the second derivative of solutions of (18). One of the merits of Dieudonné’s
proof is that it works in infinite dimensions.

Example. Fields of hyperplanes and contact structures. If α is a nowhere vanishing
Pfaffian form on V and Kz := Kerαz, the curvature at z of the Pfaffian system K identifies to
−dαz|Kz by the isomorphism of νKz = TzV/Kz onto R induced by αz.

Indeed, for all local sections X, Y of the vector bundle K in the neighbourhood of z, one has
αX = αY = 0, and therefore αz[Xz, Yz] = −dαz(Xz, Yz) by (11).

A contact structure therefore is “completely non integrable”, its curvature being at every
point a nondegenerate bilinear form.

The canonical contact structure K = K1(M,R) of J1(M,R) is a connection on the trivial
fibre bundle J1(M,R) = T ∗M × R over T ∗M ; therefore, it has an intrinsic “Christoffel map”:
denoting by x = (q, p) (p ∈ T ∗q M), as in mechanics, the points of T ∗M and by z = (q, p, y)
those of J1(M,R), each Kz is defined by the equation dy = p dq; hence, it is the graph of the
linear form p dq on Tx(T ∗M); the Pfaffian form λ = λM on T ∗M given by λx = p dq is called
the Liouville form of T ∗M .
The curvature of the connection K1(M,R) on the trivial fibre bundle J1(M,R) = T ∗M ×R over
T ∗M identifies therefore to the 2-form dλM on T ∗M : one obtains again the canonical symplectic
form ωM = −dλM of T ∗M .

Remarks. To obtain Hamilton’s equations under their historical form, one has the choice
between our sign conventions and those of [22], according to which ωM = dλM and ωMXH =
−dH.

Every etale map g between open subsets of M lifts to the map T ∗g of T ∗Dom g onto T ∗ Im g

given by T ∗g(q, p) :=
(
g(q), p◦(Tqg)−1

)
, which is obviously symplectic (it preserves the Liouville

form); if X is a vector field on M , each T ∗gt
X is the time t of the flow of the Hamiltonian vector

field with Hamiltonian K(q, p) = pXq; the first integrals of classical mechanics obtained by
applying the “Hamiltonian Noether theorem” are in general such K’s.

Given a Pfaffian system P on V , let P⊥ be the sub-vector bundle of T ∗V whose fibre over x

consists of those ξ ∈ T ∗xV which vanish on Px. For each a ∈ V , there exist r sections α1, . . . , αr

of P⊥ over an open subset U 3 a such that α(x) :=
(
α1(x), . . . , αr(x)

)
is a basis of P⊥x for every

x ∈ U ; in other words, α(x) induces an isomorphism of νPx onto Rr that, as for r = 1, identifies
Rx to −dα(x)|P2

x
= −(

dα1(x), . . . , dαr(x)
)|P2

x
∈ Lalt(Px,Rr).

It follows from Thom’s transversality lemma that “almost every” Pfaffian form on a manifold
of odd dimension is a contact form off a hypersurface40. In contrast, it is clear that, apart from

40Smooth, see for example [9]; similarly, the exterior derivative of “almost every” Pfaffian form on a manifold

M of even dimension is symplectic off a hypersurface, necessarily nonempty if M is compact without boundary.
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those defined by a submersion and line fields, Pfaffian systems almost never are completely
integrable. Why devote so many efforts to such improbable objects? An answer is that they
appear in a rather robust way (despite a certain loss of regularity under perturbations) in the case
of the stable and unstable foliations of an Anosov diffeomorphism—hence, it seems, Novikov’s
interest in the subject; another answer, very present in Élie Cartan’s work, is that the most
symmetric objects often are the most beautiful and the most useful; here is an illustration,
assuming some knowledge of de Rham cohomology:

The “Gauss-Manin” connection associated to a proper submersion and mon-

odromy. One can associate to every proper submersion
E

↓ π

B

the vector bundle H•E over

B on K = R or C whose fibre over b is the cohomology space H•(Eb,K). To see that it is
indeed a vector bundle endowed with a canonical flat linear connection H, we are going to con-
struct41 a vector bundle atlas {ϕ̃}ϕ∈Φ such that, denoting by Hϕ the linear flat connection on
Dom ϕ̃ whose Christoffel map in the chart ϕ̃ is42 Γ = 0, the connections Hϕ and Hψ, coincide
on Dom ψ̃ ∩ Dom ϕ̃ for ϕ,ψ ∈ Φ; hence, the local connections Hϕ do define a global flat linear
connection H on H•E.

In this construction, Φ is the atlas of B consisting of those charts whose image is an open ball
centred at 0 in Rn. A connection on π being chosen, the proof of Ehresmann’s theorem shows that
there exists for each ϕ ∈ Φ a trivialisation hϕ : π−1(Domϕ) → Domϕ × Fϕ of π over Domϕ;
for b ∈ Domϕ, the canonical injection ib : Eb ↪→ π−1(Domϕ) induces an isomorphism i∗b of
H•(π−1(Dom ϕ),K) onto H•(Eb,K) which, via hϕ, is the isomorphism j∗b of H•(Dom ϕ×Fϕ,K)
onto H•({b}×Fϕ,K

)
induced by the inclusion43 jb : {b}×Fϕ ↪→ Domϕ×Fϕ. One can therefore

associate to ϕ the chart ϕ̃ of H•E over ϕ, with image Imϕ × H•(π−1(Domϕ),K), given by
ϕ̃(b, c) :=

(
ϕ(b), (i∗b)

−1c
)
, c ∈ H•(Eb,K). Il is easy to check that one gets in this fashion the

required vector bundle atlas and flat connection44.
For b ∈ B, parallel transport along each loop γ in B, with base point b, defines an automor-

phism of H•Eb since the connection is linear; as it is flat, this automorphism depends only on
the homotopy class of γ; this defines a homomorphism of the fundamental group π1(B, b) into
the group of automorphisms of H•Eb, called monodromy.

Torsion, Levi-Civita connection and variants. The torsion τa ∈ Lalt(TaM, TaM) at
a ∈ M of a linear connection on a manifold M (i. e. on its tangent bundle) can be defined quickly
as follows: for every parametrised surface σ : (R2, 0) → (M, a), one has τa

(
∂1σ(0), ∂2σ(0)

)
=

D2∂1σ(0)−D1∂2σ(0), where D1∂2σ(s, t) := D
∂s

∂
∂tσ(s, t) and D2∂1σ(s, t) := D

∂t
∂
∂sσ(s, t). For each

Riemannian metric on M , there exists a unique linear connection without torsion (“symmetric”)
on M that is Riemannian, i. e. such that the parallel transport from time s to time t along any
path γ in M is an isometry of Tγ(s)M onto Tγ(t)M : it is called the Levi-Civita connection. Its

41Assuming E paracompact. . .
42More simply, ϕ̃ is a plaque family of the foliation defined by Hϕ, which therefore is born “integrated”; by

the way, Élie Cartan named infinitesimal connection what we call a connection; the problem is to “connect” two

nearby fibres Eb, Eb′—for (infinitesimal) connections with nonzero curvature, however, the result depends, even

locally, on the arc from b to b′ along which parallel transport is taken.
43The inverse isomorphism is p∗b , where pb(x, y) := (b, y), as every closed differential form α on Dom ϕ × Fϕ

such that j∗b α = 0 is exact: to see it, just apply our proof of Poincaré’s lemma to the vector field X on Dom ϕ×Fϕ

whose image by ϕ× idFϕ admits the flow (x, y) 7→ �
b + et(x− b), y

�
.

44A subtle feature of the construction is that the fibre bundle H•E and the connection are K–analytic when

π is, whereas the local trivialisations hϕ are not—they are obtained using partitions of unity.
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absence of torsion allows for example an intrinsic proof of the fact that the critical points of the
action functional 1

2

∫ 1
0 ‖γ̇(t)‖2 dt on the space of paths γ with fixed endpoints γ(0), γ(1) in M

are the geodesics, solutions of the equation D
dt γ̇(t) = 0.

Since parallel transport for the Levi-Civita connection preserves the scalar product, it induces
a parallel transport of orthonormal frames of the tangent spaces of M , which is the parallel
transport of a connection on the bundle of orthonormal frames; this connection is principal,
meaning that parallel transport preserves the action of the structural group.

9. As a conclusion

Of course, I have barely touched the subject, my only ambition being to provide some access
to the ideas of Ehresmann and his master Élie Cartan. The work of the latter is not yet finished,
as each generation tries to cast some light on it. A first rate contribution in that respect was
Charles Ehresmann’s introduction of fibre bundles, jets and connections, but also pseudogroups
and groupoids45, now again very popular [26, 27, 18] in spite of their ugly name46; in the works
of Lie or Élie Cartan, “groups” were quite often pseudogroups—which appear already when
one considers the flow of a non complete vector field (similarly, what plays the role of a one-
parameter group for time-dependent vector fields is a “groupoid with two parameters”, which
shows that many scientists manipulate groupoids without being aware of it!)47.

To Élie Cartan, as I said, one goes back all the time: his “equivalence problem”48 [6, 20]
reappears as an algorithmic “equivalence method” [17]; his theory of involution goes on inspiring
Malgrange [23] after Kuranishi and many others [12, 1], such as Ehresmann, whose jets allow
an intrinsic formulation of the prolongations of a differential system.

It should also be time, by the way, to go back to Ehresmann before his beautifully concise
texts become inaccessible49; thus, the proof of “the” theorem of Ehresmann I have given is the
original one [13] . . . so elliptic that many people replaced it by arguments far less elegant and
natural.

45Typical examples: the diffeomorphisms between open subsets of a manifold M form a pseudogroup, and

even a groupoid if it is forbidden to compose two of them when the domain of the second is not exactly the image

of the first; the germs at points of M of such local diffeomorphisms form a groupoid (one can compose a germ f

at a and a germ g at b only if b = f(a)), ainsi so do their jets of order k; when M is endowed with an additional

structure, for example a Riemannian metric or a symplectic form or a contact structure, the (jets or germs of)

local diffeomorphisms preserving this structure form a sub-pseudogroup or a sub-groupoid of the previous one;

the Riemannian example of an otherwise round sphere with a bump in the neighbourhood of a point shows that

this pseudogroup or groupoid can be rather irregular, well apt to detect local symmetries ignored by the group

of global isometries of our sphere onto itself, in general trivial. A fundamental object in foliation theory is the

holonomy groupoid generalising monodromy.
46To say nothing of the horrible algebroids, direct from a bad science fiction film.
47The emphasis on abstract groups, which, according to the dogma, act only on themselves until they are

represented, partially rejected into darkness Lie’s original groups, pseudogroups of transformations that cannot

always be abstracted from the space on which they act [3, 5].
48Find criteria for two structures to be locally equivalent up to local coordinate changes; of course, the langage of

manifolds, used throughout this article, is coordinate-free, so that “coordinate change” means “diffeomorphism”—

genuine problems cannot depend on the choice of coordinates.
49Of course, science progresses to a large extent because its actors do not really understand the work of their

predecessors, so that they make it into something else, sometimes more interesting than the original, but there

are limits. . .
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Société mathématique de France.
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[12] Dieudonné, J., (1971), Éléments d’Analyse, tome 4, Gauthier-Villars, Paris.

[13] Ehresmann, C., (1950), Les connexions infinitésimales dans un espace fibré différentiable, Colloque Top.
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